Abstract

The time-of-flight of a signal captures the time it takes to propagate from a transmitter to a receiver. Time-of-flight is perhaps the most intuitive method for localization using wireless signals. If one can accurately measure the time-of-flight from a transmitter, one can compute the transmitter's distance simply by multiplying the time-of-flight by the speed of light. Today, GPS, the most widely used outdoor localization system, localizes a device using the time-of-flight of radio signals from satellites. However, applying the same concept to indoor localization has proven difficult. Systems for localization in indoor spaces are expected to deliver high accuracy (e.g., a meter or less) using consumer-oriented technologies (e.g., Wi-Fi on one's cellphone). Unfortunately, past work could not measure time-of-flight at such an accuracy on Wi-Fi devices. As a result, over the years, research on accurate indoor positioning has moved towards more complex alternatives such as employing large multi-antenna arrays to compute the angle-of-arrival of the signal. These new techniques have delivered highly accurate indoor localization systems. Despite these advances, time-of-flight based localization has some of the basic desirable features that state-of-the-art indoor localization systems lack. In particular, measuring time-of-flight does not require more than a single antenna on the receiver. In fact, by measuring time-of-flight of a signal to just two antennas, a receiver can intersect the corresponding distances to locate its source. Thus, a receiver can locate a wireless transmitter with no support from the surrounding infrastructure. This is quite unlike current indoor localization systems, which require multiple access points at known locations, to find the distance between a pair of mobile devices. Furthermore, each of these access points need to have many antennas -- far beyond what is supported in commercial Wi-Fi devices. In this demo, we will present Chronos, a system that combines a set of novel algorithms to measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. In particular, we will measure distance/time-of-flight between two devices equipped with commercial Wi-Fi cards, without any support from the infrastructure or environment fingerprinting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call