Abstract

A template-free carbonization-activation route is developed to fabricate sub-nanopore-containing porous carbon by using a novel polypyrrole (PPy) hydrogel as a precursor. This design of PPy hydrogel precursor containing molecular-scale grids (diameter∼2.0 nm) allows for homogeneous N,O-codoping into the porous carbon scaffold during the pyrolysis process. A subsequent activation step produces activated porous carbons (APCs) with tailored pore structures, which renders the APCs abundant sub-nanopores on their surface to increase the specific capacitance as extra capacitance sites. Coupled with large specific surface area and abundant heteroatoms, the optimized APC4/1 displays excellent specific capacitance of 379 F/g for liquid-state supercapacitor and 230F/g for solid-state supercapacitor. The solid-state supercapacitor shows a high energy density of 22.99 Wh/kg at power density of 420 W/kg, which is higher than most reported porous carbon materials and satisfy the urgent requirements of elementary power source for electric vehicles. Moreover, this method can be easily modified to fabricate sub-nanopore-containing porous carbons with preferred structures and compositions for many applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.