Abstract

Solving the doping asymmetry issue in wide-gap semiconductors is a key difficulty and long-standing challenge for device applications. Here, a desorption-tailoring strategy is proposed to juggle the carrier concentration and transport. Specific to the p-doping issue in Al-rich AlGaN, self-assembled p-AlGaN superlattices with an average Al composition of over 50% are prepared by adopting this approach. The hole concentration as high as 8.1 × 1018 cm−3 is thus realized at room temperature, which is attributed to the significant reduction of effective Mg activation energy to 17.5 meV through modulating the activating path, as well as the highlighted Mg surface-incorporation by an intentional interruption for desorption. More importantly, benefiting from the constant ultrathin barrier thickness of only three monolayers via this approach, vertical miniband transport of holes is verified in the p-AlGaN superlattices, greatly satisfying the demand of hole injection in device application. 280 nm deep-ultraviolet light-emitting diodes are then fabricated as a demo with the desorption-tailored Al-rich p-AlGaN superlattices, which exhibit a great improvement of the carrier injection efficiency and light extraction efficiency, thus leading to a 55.7% increase of the light output power. This study provides a solution for p-type doping of Al-rich AlGaN, and also sheds light on solving the doping asymmetry issue in general for wide-gap semiconductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.