Abstract

The dilemma between the thickness and accessible active site triggers the design of porous crystalline materials with mono-layered structure for advanced photo-catalysis applications. Here, a kind of sub-nanometer mono-layered nanosheets (Co-MOF MNSs) through the exfoliation of specifically designed Co3 cluster-based metal-organic frameworks (MOFs) is reported. The sub-nanometer thickness and inherent light-sensitivity endow Co-MOF MNSs with fully exposed Janus Co3 sites that can selectively photo-reduce CO2 into formic acid under simulated flue gas. Notably, the production efficiency of formic acid by Co-MOF MNSs (0.85mmolg-1h-1) is ≈13 times higher than that of the bulk counterpart (0.065mmolg-1h-1) under a simulated flue gas atmosphere, which is the highest in reported works up to date. Theoretical calculations prove that the exposed Janus Co3 sites with simultaneously available sites possess higher activity when compared with single Co site, validating the importance of mono-layered nanosheet morphology. These results may facilitate the development of functional nanosheet materials for CO2 photo-reduction in potential flue gas treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.