Abstract
125Te NMR spectra and spin-lattice relaxation times, T1, have been measured for several GeTe-based materials with Te excess. The spectra show inhomogeneous broadening by several thousand ppm and a systematic variation in T1 relaxation time with resonance frequency. The quadratic dependence of the spin-lattice relaxation rate, 1/T1, on the Knight shift in the Korringa relation is found to be valid over a wide range of Knight shifts. This result confirms that T1 relaxation in GeTe-based materials is mostly dominated by hyperfine interaction between nuclei and free charge carriers. In GeTe with 2.5% excess of Te, about 15% of the material exhibits a Knight shift of ≥4500ppm and a T1 of only 0.3ms, indicating a high hole concentration that could correspond to close to 50% vacancies on the Ge sublattice in this component. Our findings provide a basis for determining the charge carrier concentration and its distribution in complex thermoelectric and phase-change tellurides, which should lead to a better understanding of electronic and thermal transport properties as well as chemical bonding in these materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.