Abstract

The TAPIR sequence is an accurate and efficient method for T1 mapping. It combines a slice-interleaving Look-Locker read-out with an acquisition of multiple k-space lines in 1 shot. Whereas the acquisition of multiple lines per excitation increases imaging speed, the corresponding increase in TR and TE is detrimental to the T1 fitting performance. This is especially problematic for substances exhibiting rapid T2* relaxation (e.g., myelin water). The T1 fitting performance of TAPIR is enhanced by using an interleaved spiral read-out with shorter TE and TR. Furthermore, an improvement to a method for fast gradient delay estimation is presented. Whereas previous methods assume the gradient delay to be stationary, the presented approach corrects the spiral k-space trajectory by using a polynomial fit of the measured gradient delays. Gradient delay artifacts are largely eliminated, requiring very little additional scanning time. The sampling efficiency of the spiral read-out allows for a significant reduction of the acquisition time in comparison to Cartesian TAPIR. Spiral TAPIR enables the sampling of more slices and an accurate measurement of rapidly relaxing compartments. Over a wide T1 range (448-3115 ms), spiral TAPIR reduces the mean fitting error from -2.5% to -0.1%. Combining 50% undersampling with the shorter TR of spiral TAPIR, an increase in imaging speed by a factor of up to 3.3 was achieved. Using a spiral read-out trajectory, the established TAPIR sequence enables measurement of rapidly relaxing T1 compartments, while improving T1 mapping performance and imaging speed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call