Abstract

Environmental concentrations of antibiotics, usually below MIC, have significant biological effects on bacterial cells. Sub-MIC antibiotics exposure induces bacteria to produce outer membrane vesicles (OMVs). Recently, OMVs is discovered as a novel pathway for dissimilatory iron reducing bacteria (DIRB) to mediate extracellular electron transfer (EET). Whether and how the antibiotic-induced OMVs modulate iron oxides reduction by DIRB have not been studied. This study showed the sub-MIC antibiotics (ampicillin or ciprofloxacin) increased OMVs secretion in Geobacter sulfurreducens, and the antibiotic-induced OMVs contained more redox active cytochromes facilitating iron oxides reduction, especially for the ciprofloxacin-induced OMVs. Deduced from a combination of electron microscopy and proteomic analysis, the influence of ciprofloxacin on SOS response triggered prophage induction and led to the formation of outer-inner membrane vesicles (OIMVs) in, which was a first report in Geobacter species. While ampicillin disrupting cell membrane integrity resulted in more formation of classic OMVs from outer membrane blebbing. The results indicated that the different structure and composition of vesicles were responsible for the antibiotic-dependent regulation on iron oxides reduction. This newly identified regulation on EET-mediated redox reactions by sub-MIC antibiotics expands our knowledge about the impact of antibiotics on microbial processes or “non-target” organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call