Abstract

We present a novel frequency-domain motion estimation technique, which operates on hexagonal images and employs the hexagonal Fourier transform. Our method involves image sampling on a hexagonal lattice followed by a normalised hexagonal cross-correlation in the frequency domain. The term subpixel (or subcell) is defined on a hexagonal grid in order to achieve floating point registration. Experiments using both artificially induced motion and actual motion demonstrate that the proposed method outperforms the state-of-the-art in frequency-domain motion estimation operating on a square lattice, in the shape of phase correlation, in terms of subpixel accuracy for a range of test material and motion scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.