Abstract

In this paper, a double pendulum model with multi-point collision is established to study the sub-harmonic bifurcation of high-dimensional coupled non-smooth systems. Considering the coupling and non-smoothness of the system, a two-step decoupling method is proposed to detect the sub-harmonic bifurcation of a two-degree-of-freedom non-smooth coupled system. The core view is to introduce energy-time scale transformation to overcome the obstacle of the system coupled term. In the first step, a reversible transformation is introduced to decouple the system. This transformation enables the coupled form of the impact term, which presents novel obstacles to the high-dimensional non-smooth system. By introducing energy-time scale transformation in the second step, the system is expressed as a smooth decoupling form of the energy coordinate, and the trouble of impact term coupled is solved. Furthermore, the sub-harmonic Melnikov function which depends on frequency, amplitude of excitation and impact recovery coefficient is derived by using the two-step decoupling method. Hence, the sub-harmonic Melnikov function is extended to the high-dimensional non-smooth system, which reveals the influence of the impact recovery coefficient on the existence of sub-harmonic periodic orbits. The innovation of this method is that it solves the coupled problem of non-smooth terms, quantifies the impact of impact recovery coefficient on the dynamic behavior of the system, and provides a theoretical basis for the actual parameter design and control in engineering. The obtained theoretical results are verified through the numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.