Abstract

The predictive simulation of gas–liquid multiphase flows at industrial scales reveals the challenging task to consider turbulence and interfacial structures, which span a large range of length scales. For simulation of relevant applications, a hybrid model can be utilised, which combines the Euler–Euler model for the description of small interfacial structures with a volume-of-fluid model as a scale-resolving multiphase approach. Such a hybrid model needs to be able to simulate interfaces, which are hardly resolved on a coarse numerical grid. The goal of this work is to improve the prediction of interfacial gas–liquid flows on a numerical grid with comparably large grid spacing. From the low-pass filtering of the two-fluid model five unclosed sub-grid scale terms arise. The convective and the surface tension part of the aforementioned contributions are individually modelled with multiple closure formulations. Those models are a-posteriori assessed in cases of two- and three-dimensional gas bubbles rising in stagnant liquid. It is shown, that the chosen closure modelling approach is suitable to improve the predictive power of the numerical model utilised in this work. Hence, simulation results on comparably coarse grids are changed towards results obtained with higher spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.