Abstract

In this work, a new, simple method is presented, which enables identification of material properties of solids basing on the digital image correlation (DIC) measurements. It may be considered as a simplified alternative of low computational complexity for the well-known finite element model updating (FEMU) method and virtual fields method (VFM). The idea of the introduced sub-global equilibrium (SGE) method is to utilize the fundamental concept and definition of internal forces and its equilibrium with appropriate set of external forces. This makes the method universal for the use in the description of a great variety of continua. The objective function is the measure of imbalance, namely the sum of squares of residua of equilibrium equations of external forces and internal forces determined for finite-sized part of the sample. It is then minimized with the use of the Nelder–Mead downhill simplex algorithm. The efficiency of the proposed SGE method is shown for two types of materials: 310 S austenitic steel and carbon-fiber-reinforced polymer (CFRP). The proposed method was also verified based on FE analysis showing error estimation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.