Abstract

On a complete non-compact Riemannian manifold $M$, we prove that a so-called quasi Riesz transform is always $L^p$ bounded for $1<p\leq 2$. If $M$ satisfies the doubling volume property and the sub-Gaussian heat kernel estimate, we prove that the quasi Riesz transform is also of weak type $(1,1)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.