Abstract

Motivated by recent efforts to achieve sub-femtosecond structural resolution in various molecular systems, we have performed a femtosecond quantum dynamics study of the water cation in the X ̃(2)B1 and Ã(2)A1 electronic states. Autocorrelation functions for H2O(+) and D2O(+) are calculated for such electronic states by solving numerically the time-dependent Schrödinger equation. From the ratio of the squared autocorrelation functions of D2O(+) and H2O(+), the high-order harmonic generation signals are calculated. Substantial vibrational dynamics is found in the Ã(2)A1 state as compared to the one in X ̃(2)B1, which supports recent experimental findings of Farrell et al., Phys. Rev. Lett., 2011, 107, 083001. Maxima in the above ratio are also predicted at ∼1.1 fs and ∼1.6 fs for the X ̃(2)B1 and Ã(2)A1 states, respectively. The expectation values of the positions of the atoms in H2O(+) as a function of time reveal a strong excitation of the bending mode in the Ã(2)A1 state, which explains the observed vibrational dynamics. The peaks in the ratios of the squared autocorrelation functions are also explained in terms of the evolving geometries of the water cation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.