Abstract

Isotope energy shifts and hyperfine structure have been measured for 33 high-energy Rydberg levels of atomic xenon by sub-Doppler two-photon excitation spectroscopy, using narrowband pulses of coherent ultraviolet light at 205–213 nm generated by nonlinear-optical conversion processes. Rydberg levels are accessed at two-photon excitation energies in the 97 300–94 100 cm−1 range where isotope energy shifts and hyperfine structure have rarely been resolved; these Rydberg levels are 5p5 np [1/2]0 (n = 9–13), 5p5 np [3/2]2 (n = 9–13), 5p5 np [5/2]2 (n = 9–17), 5p5 nf [3/2]2 (n = 6–14) and 5p5 nf [5/2]2 (n = 6–10). The sub-Doppler spectra display diverse hyperfine-coupling effects, for which least-squares-fit spectroscopic parameters reflect the influence of angular momentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.