Abstract

The grating magneto-optical trap (GMOT) requires only one beam and three planar diffraction gratings to form a cloud of cold atoms above the plane of the diffractors. Despite the complicated polarization arrangement, we demonstrate sub-Doppler cooling of 87Rb atoms to a temperature of 7.6(0.6) uK through a multi-stage, far-detuned GMOT in conjunction with optical molasses. A decomposition of the electric field into polarization components for this geometry does not yield a mapping onto standard sub-Doppler laser-cooling configurations. With numerical simulations, we find that the polarization composition of the GMOT optical field, which includes sigma- and pi-polarized light, does produce sub-Doppler temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.