Abstract

This study uses a sub-diffusive light transport model to analyze fiber-optic measurements of reflectance spectra to recover endogenous tissue biomarkers and to correct raw fluorescence emissions for distortions from background optical properties. Measurements in tissue-simulating phantoms validated accurate recovery of the reduced scattering coefficient [(0.3-3.4 mm-1), error 10%], blood volume fraction [(1-3 vol%), error 7%], and a dimensionless metric of anisotropic scattering, γ, that is sensitive to submillimeter tissue ultrastructure [(1.29-2.06), error 11%]. In vivo sub-diffusive optical data acquired during clinical neurosurgeries characterize differences in microstructure (γ), perfusion (blood volume), and metabolism (PpIX fluorescence) between normal cortex and malignant tumor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.