Abstract

BackgroundThe aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt) based biopesticides in mice. Endpoints were lung inflammation evaluated by presence of inflammatory cells in bronchoalveolar lavage fluid (BALF), clearance of bacteria from the lung lumen and histological alterations of the lungs. Hazard identifications of the biopesticides were carried out using intratracheal (i.t.) instillation, followed by an inhalation study. The two commercial biopesticides used were based on the Bt. subspecies kurstaki and israelensis, respectively. Groups of BALB/c mice were i.t instilled with one bolus (3.5 × 105 or 3.4 × 106 colony forming units (CFU) per mouse) of either biopesticide. Control mice were instilled with sterile water. BALFs were collected and the inflammatory cells were counted and differentiated. The BALFs were also subjected to CFU counts.ResultsBALF cytology showed an acute inflammatory response dominated by neutrophils 24 hours after instillation of biopesticide. Four days after instillation, the neutrophil number was normalised and inflammation was dominated by lymphocytes and eosinophils, whereas 70 days after instillation, the inflammation was interstitially located with few inflammatory cells present in the lung lumen.Half of the instilled mice had remaining CFU recovered from BALF 70 days after exposure. To gain further knowledge with relevance for risk assessment, mice were exposed to aerosols of biopesticide one hour per day for 2 × 5 days. Each mouse received 1.9 × 104 CFU Bt israelensis or 2.3 × 103 CFU Bt kurstaki per exposure. Seventy days after end of the aerosol exposures, 3 out of 17 mice had interstitial lung inflammation. CFU could be recovered from 1 out of 10 mice 70 days after exposure to aerosolised Bt kurstaki. Plethysmography showed that inhalation of Bt aerosol did not induce airway irritation.ConclusionsRepeated low dose aerosol exposures to commercial Bt based biopesticides can induce sub-chronic lung inflammation in mice, which may be the first step in the development of chronic lung diseases. Inhalation of Bt aerosols does not induce airway irritation, which could explain why workers may be less inclined to use a filter mask during the application process, and are thereby less protected from exposure to Bt spores.

Highlights

  • The aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt) based biopesticides in mice

  • The particle counts from APS and Lighthouse particle counter (LHPC) particle counters were stable throughout the exposure (Figure 1)

  • colony forming units (CFU) recovery from BAL fluid and from total lung homogenate Comparison of the CFU present in total lung homogenate to the CFU recovered from BAL fluid revealed that an average of 13% of the total CFU was recovered by the BAL procedure

Read more

Summary

Introduction

The aim of the present study was to assess possible health effects of airway exposures to Bacillus thuringiensis (Bt) based biopesticides in mice. Regarded as harmless to humans, Bacillus thuringiensis (Bt) is used worldwide as a commercial biopesticide for the pest control of insects. It is typically used in large spray campaigns on open fields or indoor in green houses [1]. Long-term effect of biopesticide exposure are not likely to be revealed in longitudinal epidemiological studies, since many green house workers are only temporary employed and may have changed occupation at the time of follow-up

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.