Abstract
This paper concerns moment and tail probability inequalities and the strong law of large numbers for $U$-statistics with nonnegative or symmetrized kernels and their multisample and decoupled versions. Sub-Bernoulli functions are used to obtain the moment and tail probability inequalities, which are then used to obtain necessary and sufficient conditions for the almost sure convergence to zero of normalized $U$-statistics with nonnegative or completely symmetrized kernels, without further regularity conditions on the kernel or the distribution of the population, for normalizing constants satisfying a simple condition. Moments of $U$-statistics are bounded from above and below by that of maxima of certain kernels, up to scaling constants. The multisample and decoupled versions of these results are also considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.