Abstract

Abstract. In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.

Highlights

  • If the sum of individual components is statistically equal to the total sea level variations, the budget is closed

  • Is satisfied within uncertainties, where hsla,glacial isostatic adjustment (GIA) is the GIAcorrected mean sea level (MSL) anomaly derived from the Jason satellites, hssla the mean steric sea level anomaly derived from Argo and hmca,GIA the mean GIA-corrected mass component (MC) anomaly in terms of equivalent water height (EWH) derived from Gravity Recovery And Climate Experiment (GRACE)

  • As far as altimetry is concerned, after computing individual along-track sea level anomalies, two important processing steps are described : a suitable averaging method to come to a time series of MSL for a given area and a way to deal with geographical dependencies of the intermission bias between the two Jason missions (Ablain et al, 2015)

Read more

Summary

Introduction

If the sum of individual components is statistically equal to the total sea level variations, the budget is closed. Total sea level variations and its components are observed by in situ and satellite measurements, but can be modelled. Several studies have attempted to close the sea level budget by using satellite altimetry, satellite gravimetry and observations or reanalyses of ocean temperature and salinity on a global scale. Closure of the budgets is required to get a consistent division between the mass component (MC) and steric-related sea level changes. This helps us to identify the contributors. M. Kleinherenbrink et al.: Sub-basin-scale sea level budgets from satellite altimetry to present-day sea level changes. Ocean dynamics have an effect on both the MC and the steric change in sea level

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.