Abstract

AbstractThe relationship between hole density and conductivity in electrochemically gated polythiophene films is examined. The films are integrated into electrolyte‐gated transistors (EGTs), so that hole accumulations can be electrochemically modulated up to ≈0.4 holes per thiophene ring (hpr). Polythiophenes include poly(3‐alkylthiophenes) (P3ATs) with four different side chain lengths – butyl (P3BT), hexyl (P3HT), octyl (P3OT), or decyl (P3DT) – and poly[2,5‐bis(3‐dodecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] (PBTTT) and poly(3,3′′′‐didodecyl[2,2′:5′,2′′:5′′,2′′′‐quaterthiophene]‐5,5′′′‐diyl) (PQT). Analysis of the drain current – gate voltage (ID–VG) and gate current – gate voltage (IG–VG) characteristics of the EGTs reveals that all six polythiophene semiconductors exhibited reversible conductivity peaks at 0.12 – 0.15 hpr. Conductivity is suppressed beyond ≈0.4 hpr.The maximum carrier mobilities of the P3AT semiconductors increase, and hysteresis of the conductivity peaks decreases, with increasing alkyl side‐chain length. PBTTT and PQT with reduced side chain densities exhibit the largest hysteresis but have higher hole mobilities. The results suggest that at ≈0.4 hpr, a polaronic sub‐band is filled in all cases. Filling of the sub‐band correlates with a collapse in the hole mobility. The side‐chain dependence of the peak conductivity and hysteresis further suggests that Coulombic ion‐carrier interactions are important in these systems. Tailoring ion‐carrier correlations is likely important for further improvements in transport properties of electrochemically doped polythiophenes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.