Abstract

In tundra ecosystems, snow cover protects plants from low temperatures in winter and buffers temperature fluctuations in spring. Climate change may lead to reduced snowfall and earlier snowmelt, potentially exposing plants to more frequent and more severe frosts in the future. Frost can cause cell damage and, in combination with high solar irradiance, reduce the photochemical yield of photosystem II (ΦPSII). Little is known about the natural variation in frost exposure within individual habitats of tundra plant populations and the populations’ resilience to this climatic variation. Here, we assessed how natural differences in snowmelt timing affect microclimatic variability of frost exposure in habitats of the evergreen Vaccinium vitis-idaea in sub-Arctic alpine Finland and whether this variability affects the extent of cell damage and reduction in ΦPSII. Plants in early melting plots were exposed to more frequent and more severe frost events, and exhibited a more pronounced decrease in ΦPSII, during winter and spring compared to plants in late-melting plots. Snowmelt timing did not have a clear effect on the degree of cell damage as assessed by relative electrolyte leakage. Our results show that sub-Arctic alpine V. vitis-idaea is currently exposed to strong climatic variation on a small spatial scale, similar to that projected to be caused by climate change, without significant resultant damage. We conclude that V. vitis-idaea is effective in mitigating the effects of large variations in frost exposure caused by differences in snowmelt timing. This suggests that V. vitis-idaea will be resilient to the ongoing climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call