Abstract

Conical intersections allow electronically excited molecules to return to their electronic ground state. Here, we observe the fastest electronic relaxation dynamics measured to date by extending attosecond transient-absorption spectroscopy (ATAS) to the carbon K-edge. We selectively launch wave packets in the two lowest electronic states (D0 and D1) of C2H4 + The electronic D1 → D0 relaxation takes place with a short time constant of 6.8 ± 0.2 femtoseconds. The electronic-state switching is directly visualized in ATAS owing to a spectral separation of the D1 and D0 bands caused by electron correlation. Multidimensional structural dynamics of the molecule are simultaneously observed. Our results demonstrate the capability to resolve the fastest electronic and structural dynamics in the broad class of organic molecules. They show that electronic relaxation in the prototypical organic chromophore can take place within less than a single vibrational period.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.