Abstract

Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders. 1D nanopatterns of various 2D perovskites (A'2 MAn -1 Pbn X3 n +1 ,A'= BA, PEA, X = Br, I) are developed; their enhanced photoluminescence (PL) quantum yields areapproximately four times greater than those of the corresponding control flat films. Anisotropic photocurrent is observed because 2D perovskite nanocrystals are embedded in a topological 1D nanopattern. Furthermore, this 1D metal-coated nanopattern of a 2D perovskite is employed as a color conversion optical polarizer, in which polarized PL is developed. This is due to its capability of polarization of an incident light arising from the sub-30nm line pattern, as well as the PL of the confined 2D perovskite nanocrystals in the pattern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.