Abstract
The most critical challenges in EUVL include the manufacturing of defect-free EUVL substrates, blanks, and masks. Developing capability in the areas of sub-100nm defect metrology, characterization, and analysis provides the key path for defect root-cause analysis in the defects elimination roadmap. We have demonstrated successful application of integrated surface analytical techniques, including AES (Auger Electron Spectroscopy), EDX (Electron Dispersion X-ray Spectrometry), SEM, and AFM to review, analyze, and characterize defects on EUVL multilayer blanks and substrates, following the optical defect inspection process by the Lasertec M1350, which does defect scanning, mapping, image review, and fiducial marking. Small defects, 40nm wide and 10nm tall, have been analyzed in morphology as well as in composition. In order to overcome the electron beam charging problem on the substrate materials during analysis, we applied marking and metal film coating on the LTEM substrates and acquired composition data. Defect metrology data serve as finger prints of the EUV blank fabrication process. We have discovered that the majority of the multilayer defects today are embedded bumps, pinholes, and organic materials that originated from the LTEM substrates. Composition data of the defects also suggested that process chemicals and human handling of process are the culprit of these defects. Therefore defect reduction efforts should be focused on the processes or procedures which take place from the glass finishing process to the very first layers of silicon molybdenum deposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.