Abstract

Transition-metal dichalcogenides are promising challengers to conventional semiconductors owing to their remarkable electrical performance and suppression of short-channel effects (SCEs). In particular, monolayer molybdenum disulfide has exhibited superior suppression of SCEs owing to its atomic thickness, high effective carrier mass, and low dielectric constant. However, difficulties still remain in large-scale stable fabrication of nanometer-scale channels. Herein, a method to fabricate electrodes with sub-10 nm gaps was demonstrated using horizontally aligned single-walled carbon nanotubes as an evaporation mask. The widths of the nanogaps exhibit robust stability to various process parameters according to the statistical results. Based on these nanogaps, ultrashort-channel length monolayer MoS2 field-effect transistors were produced. Monolayer MoS2 devices with a 7.5 nm channel length and a 10 nm thick HfO2 dielectric layer exhibited excellent performances with an ON/OFF ratio up to 107, a mobility of 17.4 cm2/V·s, a subthreshold swing of about 120 mV/dec, and a drain-induced barrier lowering of about 140 mV/V, all of which suggest a superior suppression of SCEs. This work provides a universal and stable method for large-scale fabrication of ultrashort-channel 2D-material transistors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.