Abstract
Polymers possess special dimension-dependent processing flexibility which is always absent in inorganic materials. Traditional inorganic nanowires own similar dimensions to polymers, but usually lack near-molecular diameters and the related properties. Here we report that inorganic nanowires with sub1 nm diameter and microscale length can be electrospinningly processed into superstructures including smooth fibers and large-area mat by tuning the viscosity and surface tension of the colloidal nanowires solution. These superstructures have shown both flexible texture and excellent mechanical properties (712.5 MPa for tensile strength, 10.3 GPa for elastic modulus) while retaining properties arising from inorganic components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.