Abstract

We report a new method of forming nickel silicide (NiSi) on n-Si with low contact resistance, which achieves a Schottky barrier height of as low as 0.074 eV. Antimony (Sb) and nickel were introduced simultaneously and annealed to form NiSi on n-Si (100). Sb dopant atoms were found to segregate at the NiSi/Si interface. The devices with Sb segregation show complete nickel monosilicide formation on n-Si (100) and a close-to-unity rectification ratio. The rectification ratio <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">R<sub>c</sub> </i> is defined to be the ratio of the forward current to the reverse current, where the forward and reverse currents are measured using forward and reverse bias voltages, respectively, having the same magnitude of 0.5 V. This process is also compatible and easily integrated in a CMOS fabrication process flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.