Abstract

Covariant loop gravity comes out of the canonical analysis of the Palatini action and the use of the Dirac brackets arising from dealing with the second class constraints (``simplicity'' constraints). Within this framework, we underline a quantization ambiguity due to the existence of a family of possible Lorentz connections. We show the existence of a Lorentz connection generalizing the Ashtekar-Barbero connection and we loop-quantize the theory showing that it leads to the usual SU(2) Loop Quantum Gravity and to the area spectrum given by the SU(2) Casimir. This covariant point of view allows to analyze closely the drawbacks of the SU(2) formalism: the quantization based on the (generalized) Ashtekar-Barbero connection breaks time diffeomorphisms and physical outputs depend non-trivially on the embedding of the canonical hypersurface into the space-time manifold. On the other hand, there exists a true space-time connection, transforming properly under all diffeomorphisms. We argue that it is this connection that should be used in the definition of loop variables. However, we are still not able to complete the quantization program for this connection giving a full solution of the second class constraints at the Hilbert space level. Nevertheless, we show how a canonical quantization of the Dirac brackets at a finite number of points leads to the kinematical setting of the Barrett-Crane model, with simple spin networks and an area spectrum given by the SL(2,C) Casimir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.