Abstract

Cold gas propulsion systems are preferred, especially for the altitude and trajectory control for satellites, since the 1960s. Both depressurizing the propellant in the propellant tank throughout the mission and the expansion occurring in the divergent part of the thruster nozzle are the reasons for observing very low temperatures and pressure at the outlet section. We have decided to use an open-source compressible CFD tool, SU2, in order to predict the performance of the propulsion system in the early design phase. The scope of this study is the comparison of the results of the vacuum chamber performance tests and the outcomes of unsteady simulations with SU2 using different gas models, including ideal gas, van-der Waals, and Peng-Robinson models. Then, the accuracy and performance of these models are evaluated for the extremely low temperature and pressure conditions. Thruster performance tests have been conducted in the thermal vacuum chamber test campaign at the specially built testing facilities. In order to simulate nominal and low-temperature operation conditions, a propellant tank is thermally conditioned to the predetermined values, and performance test parameters are used as the input for the CFD simulations. The obtained results showed that the van der Waals gas model is the most appropriate gas model for both cases and provides the most realistic results in terms of performance parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call