Abstract

Purpose: Synthetic-CTs(synCTs) are essential for MR-only treatment planning. However, the performance of synCT for IGRT must be carefully assessed. This work evaluated the accuracy of synCT and synCT-generated DRRs and determined their performance for IGRT in brain cancer radiation therapy. Methods: MR-SIM and CT-SIM images were acquired of a novel anthropomorphic phantom and a cohort of 12 patients. SynCTs were generated by combining an ultra-short echo time (UTE) sequence with other MRI datasets using voxel-based weighted summation. For the phantom, DRRs from synCT and CT were compared via bounding box and landmark analysis. Planar (MV/KV) and volumetric (CBCT) IGRT performance were evaluated across several platforms. In patients, retrospective analysis was conducted to register CBCTs (n=34) to synCTs and CTs using automated rigid registration in the treatment planning system using whole brain and local registration techniques. A semi-automatic registration program was developed and validated to rigidly register planar MV/KV images (n=37) to synCT and CT DRRs. Registration reproducibility was assessed and margin differences were characterized using the van Herk formalism. Results: Bounding box and landmark analysis of phantom synCT DRRs were within 1mm of CT DRRs. Absolute 2D/2D registration shift differences ranged from 0.0–0.7mm for phantom DRRs on all treatment platforms and 0.0–0.4mm for volumetric registrations. For patient planar registrations, mean shift differences were 0.4±0.5mm (range: −0.6–1.6mm), 0.0±0.5mm, (range: −0.9–1.2mm), and 0.1±0.3mm (range: −0.7–0.6mm) for the superior-inferior(S-I), left-right(L–R), and anterior-posterior(A-P) axes, respectively. Mean shift differences in volumetric registrations were 0.6±0.4mm (range: −0.2–1.6mm), 0.2±0.4mm (range: −0.3–1.2mm), and 0.2±0.3mm (range: −0.2–1.2mm) for S-I, L–R, and A–P axes, respectively. CT-SIM and synCT derived margins were within 0.3mm. Conclusion: DRRs generated via synCT agreed well with CT-SIM. Planar and volumetric registrations to synCT-derived targets were comparable to CT. This validation is the next step toward clinical implementation of MR-only planning for the brain. The submitting institution has research agreements with Philips Healthcare. Research sponsored by a Henry Ford Health System Internal Mentored Grant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call