Abstract

Purpose: The purpose of this study is to compare the different dosemetric characteristics of Linac‐based SBRT and that of Cyberknife for lungtumortreatment.Methods: Eight patients with lungtumors received Linac‐based SBRT were retrospectively included in this study. 60Gy photondose delivered in 5 frictions was prescribed to each target. To minimize respiratory motion impact, Synchrony™ (AccurayInc., Sunnyvale, CA) and a 4D dose calculation program were used for Cyberknife and Linac‐based SBRTtreatment planning respectively. Identical patients' image (50% phase image of 4DCT corresponding to the end of exhalation) and contour sets were used for dose calculation. The DVHs of PTV, GTV, and lung were studied. Results: Both modalities can provide satisfactory dose coverage to target tumor. The lungdose (2.1±0.8Gy to 1500cc and 4.3±2.1Gy to 1000cc) is well below institutional constrains. Lungdose of Cyberknife plans is more susceptible to the tumor location than that of Linac‐based SBRT plan. When tumor attaches to anterior chest wall, Cyberknife may deliver less dose to patient lung than Linac‐based SBRT. When the tumor becomes more posterior, lungdose of Cyberknife plan increases much more quickly than that of Linac‐based SBRT plan. Cyberknife may delivery higher dose to lung than Linac‐based SBRT when the tumor is located close to the posterior chest wall. The dose distribution of Cyberknife is more heterogeneous than Linac‐based SBRT in all cases. Conclusion: Both Linac‐based SBRT and Cyberknife can provide adequate dose coverage for target tumor while sparing normal tissue. Cyberknife may delivery less dose to lung than Linac‐based SBRT when the tumor is close to anterior chest wall but more dose to lung when tumor attached to posterior chest wall. This study may provide useful information to help radiation oncologist to choose SBRT modalities for lungtumortreatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.