Abstract

Purpose:To quantify the impact of 4D PET/CT on PERCIST metrics in lung and liver tumors in NSCLC and colorectal cancer patients.Methods:32 patients presenting lung or liver tumors of 1–3 cm size affected by respiratory motion were scanned on a GE Discovery 690 PET/CT. The bed position with lesion(s) affected by motion was acquired in a 12 minute PET LIST mode and unlisted into 8 bins with respiratory gating. Three different CT maps were used for attenuation correction: a clinical helical CT (CT_clin), an average CT (CT_ave), and an 8‐phase 4D CINE CT (CT_cine). All reconstructions were 3D OSEM, 2 iterations, 24 subsets, 6.4 Gaussian filtration, 192×192 matrix, non‐TOF, and non‐PSF. Reconstructions using CT_clin and CT_ave used only 3 out of the 12 minutes of the data (clinical protocol); all 12 minutes were used for the CT_cine reconstruction. The percent change of SUVbw_peak and SUVbw_max was calculated between PET_CTclin and PET_CTave. The same percent change was also calculated between PET_CTclin and PET_CTcine in each of the 8 bins and in the average of all bins. A 30% difference from PET_CTclin classified lesions as progressive metabolic disease (PMD) using maximum bin value and the average of eight bin values.Results:30 lesions in 25 patients were evaluated. Using the bin with maximum SUVbw_peak and SUVbw_max difference, 4 and 13 lesions were classified as PMD, respectively. Using the average bin values for SUVbw_peak and SUVbw_max, 3 and 6 lesions were classified as PMD, respectively. Using PET_CTave values for SUVbw_peak and SUVbw_max, 4 and 3 lesions were classified as PMD, respectively.Conclusion:These results suggest that response evaluation in 4D PET/CT is dependent on SUV measurement (SUVpeak vs. SUVmax), number of bins (single or average), and the CT map used for attenuation correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call