Abstract
Purpose: The latest publications indicate that the Ray Tracing algorithm significantly overestimates the dose delivered as compared to the Monte Carlo (MC) algorithm. The purpose of this study is to quantify this overestimation and to identify significant correlations between the RT and MC calculated dose distributions. Methods: Preliminary results are based on 50 preexisting RT algorithm dose optimization and calculation treatment plans prepared on the Multiplan treatment planning system (Accuray Inc., Sunnyvale, CA). The analysis will be expanded to include 100 plans. These plans are recalculated using the MC algorithm, with high resolution and 1% uncertainty. The geometry and number of beams for a given plan, as well as the number of monitor units, is constant for the calculations for both algorithms and normalized differences are compared. Results: MC calculated doses were significantly smaller than RT doses. The D95 of the PTV was 27% lower for the MC calculation. The GTV and PTV mean coverage were 13 and 39% less for MC calculation. The first parameter of conformality, as defined as the ratio of the Prescription Isodose Volume to the PTV Volume was on average 1.18 for RT and 0.62 for MC. Maximum doses delivered to OARs was reduced in the MC plans. The doses for 1000 and 1500 cc of total lung minus PTV, respectively were reduced by 39% and 53% for the MC plans. The correlation of the ratio of air in PTV to the PTV with the difference in PTV coverage had a coefficient of −0.54. Conclusion: The preliminary results confirm that the RT algorithm significantly overestimates the dosages delivered confirming previous analyses. Finally, subdividing the data into different size regimes increased the correlation for the smaller size PTVs indicating the MC algorithm improvement verses the RT algorithm is dependent upon the size of the PTV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.