Abstract

Beamlets are generated in a patient geometry in the presence of a magnetic field to investigate the effects of tissue density and magnetic field on beamlet dose distributions, which is important for the optimization of photon fluence to be delivered by a linac-MR system. 50×50 mm2 fields were placed with isocenter in the middle of a patient's right lung. Each treatment field was decomposed into 100 beamlets (each 5×5 mm2 ). BEAMnrc scored the particle phase space at 100.2 cm from the source in the linac-MR geometry (isocentre at 126 cm) with parallel magnetic fields of 0, 0.56, and 3T. DOSXYZnrc was modified to score the energy deposited by particles from this phase space as a function of the beamlet the particle passed through. The calculation volume of 70×46×64 voxels encompassed the patient with a voxel size of 3×3×3 mm3 . Each beamlet was normalized to the dose calculated to a 3×3×3 mm3 voxel with isocenter at 5cm depth in a flat water tank without a magnetic field. Beamlet files were calculated on Western Canada's high performance computing cluster (Westgrid) using 100 processors, enabling simulation of 109 histories in less than 3 hours. The resulting files, which contained 3D dose distributions for all 100 beamlets, were 81 MB per field. The Monte Carlo uncertainty was also stored. The gyroradii for 1 MeV electron traversing field lines at 20 degrees are 2.9mm and 0.5mm for 0.56 and 3T fields respectively. The 0.56T parallel magnetic field has a small effect compared to the distortion of the beamlet introduced by the presence of lung. The effect of tissue heterogeneities is more significant than the effect of a 0.56T parallel magnetic field. A 3T field refocuses the dose in lung to the beamlet path and significantly reduces the lateral electron scatter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.