Abstract

Purpose: To study the possibility of in situ verification of radiation therapy dose distributions using PET imaging based on the activity distribution of 11C and 15O produced via photonuclear reactions in patient irradiated by 45MV x-rays. Methods: The method is based on the photonuclear reactions in the most elemental composition {sup 12}C and {sup 16}O in body tissues irradiated by bremsstrahlung photons with energies up to 45 MeV, resulting primarily in {sup 11}C and {sup 15}O, which are positron-emitting nuclei. The induced positron activity distributions were obtained with a PET scanner in the same room of a LA45 accelerator (Top Grade Medical, Beijing, China). The experiments were performed with a brain phantom using realistic treatment plans. The phantom was scanned at 20min and 2-5min after irradiation for {sup 11}C and {sup 15}, respectively. The interval between the two scans was 20 minutes. The activity distributions of {sup 11}C and {sup 15}O within the irradiated volume can be separated from each other because the half-life is 20min and 2min for {sup 11}C and {sup 15}O, respectively. Three x-ray energies were used including 10MV, 25MV and 45MV. The radiation dose ranged from 1.0Gy to 10.0Gy per treatment. Results: It was confirmed thatmore » no activity was detected at 10 MV beam energy, which was far below the energy threshold for photonuclear reactions. At 25 MV x-ray activity distribution images were observed on PET, which needed much higher radiation dose in order to obtain good quality. For 45 MV photon beams, good quality activation images were obtained with 2-3Gy radiation dose, which is the typical daily dose for radiation therapy. Conclusion: The activity distribution of {sup 15}O and {sup 11}C could be used to derive the dose distribution of 45MV x-rays at the regular daily dose level. This method can potentially be used to verify in situ dose distributions of patients treated on the LA45 accelerator.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.