Abstract

Purpose: To evaluate the effect of breathing irregularities on target location in gated treatments using amplitude and phase gating. Methods: 111 breathing patterns acquired using RPM system were categorized based on period and amplitude STD as regular (STD period ≤ 0.5 s, STD amplitude ≤ 1.5 mm), medium (0.5 s 1 s, STD amplitude > 3 mm). One pattern representative of the average defined population was selected per category and corresponding target motion reproduced using Quasar Respiratory Motion Phantom. Phantom in motion underwent 4D-CT scan with phase reconstruction. Gated window was defined at end of exhale and DRRs reconstructed in treatment planning at 40% (beam on) and 60% phase (beam off). Target location uncertainty was assessed by comparing gated kV triggered images continuously acquired at beam on/off on a True Beam 2.0 with corresponding DRRs. Results: Average target uncertainty with amplitude gating was in [0.4 – 1.9] mm range for the different scenarios with maximum STD of 1.2 mm for the irregular pattern. Average target uncertainty with phase gating was [1.1 – 2.2] mm for regular and medium patterns, while itmore » increased to [3.6 – 9.6] mm for the irregular pattern. Live gated motion was stable with amplitude gating, while increasing with phase gating for the irregular pattern. Treatment duration range was [68 – 160] s with amplitude and [70 – 74] s with phase gating. Conclusion: Breathing irregularities were found to affect gated treatments only when using phase gating. For regular and medium patterns no significant difference was found between the two gating strategies. Amplitude gating ensured stable gated motion within the different patterns, thus reducing intra-fraction target location variability for the irregular pattern and resulting in longer treatment duration.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call