Abstract
In this paper, a novel discrete algebra is presented which follows by combining the SU(2) Lie-Poisson bracket with the discrete Frenet equation. Physically, the construction describes a discrete piecewise linear string in R3. The starting point of our derivation is the discrete Frenet frame assigned at each vertix of the string. Then the link vector that connect the neighbouring vertices assigns the SU(2) Lie-Poisson bracket. Moreover, the same bracket defines the transfer matrices of the discrete Frenet equation which relates two neighbouring frames along the string. The procedure extends in a self-similar manner to an infinite hierarchy of Poisson structures. As an example, the first descendant of the SU(2) Lie-Poisson structure is presented in detail. For this, the spinor representation of the discrete Frenet equation is employed, as it converts the brackets into a computationally more manageable form. The final result is a nonlinear, nontrivial and novel Poisson structure that engages four neighbouring vertices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.