Abstract

Rubbery−glassy block copolymer dispersions are an attractive solution for toughening rigid thermoplastics like polystyrene without affecting optical transparency. An interesting facet of the copolymers used is molecular disorder, artificially introduced during anionic synthesis through composition gradients along the copolymer chain and/or blending and partial coupling of different copolymers. In particular, this level of disorder is apparently a key to achieve the desired PS/copolymer blend morphologies and properties in short processing times. In this work, we investigate the role of these “synthesis imperfections” on self-assembly of styrene-rich asymmetric gradient triblock copolymers, denoted S1−G−S2, where Si are pure polystyrene blocks and G is a gradient copolymer of styrene and butadiene. Kinetic modeling of conversion data is used to predict gradient composition profiles for the anionic copolymerization conditions used. Self-assembly, dynamic viscoelastic behavior, and experimentally determined mesoscopic composition profiles across microdomains are discussed in light of the particular copolymer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.