Abstract

ABSTRACT Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following in vivo dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfCcar-occup and RfCcar-genpop) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose–response data. An overall lowest BMDL10 of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfCcar-occup/genpop values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfCcar-occup/genpop values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfCcar-occup is lung cancer protective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.