Abstract

Flexible strain sensors have attracted extensive attention due to their potential applications in wearable electronics and health monitoring. However, it is still a challenge to obtain flexible strain sensors with both high stretchability and wide linear strain sensing range. In this study, styrene-ethylene-butadiene-styrene copolymer/carbon nanotubes (SEBS/CNTs) composite fiber which showed both electrical conductivity and high stretchability was fabricated through a scalable wet spinning method. The effect of CNTs content on the strain sensing behavior of the SEBS/CNTs fiber based strain sensor was investigated. The results showed that when the CNTs content reached 7 wt%, the SEBS/CNTs composite fiber was capable of sensing strains as high as 500.20% and showed a wide linear strain sensing range of 0-500.2% with a gauge factor (GF) of 38.57. Combining high stretchability, high linearity and reliable stability, the SEBS/CNTs composite fiber based strain sensor had the ability to monitor the activities of different human body parts including hand, wrist, elbow, shoulder and knee.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.