Abstract

Styrene-butadiene-glycidyl methacrylate terpolymer (GMA-SBR) was synthesized by emulsion polymerization for the fuel efficient tire tread composite. The chemical structure of the GMA-SBR was analyzed using infrared spectroscopy, 1H NMR, gel permeation chromatography, and differential scanning calorimetry. The GMA-SBR/silica composite is the first instance introduced covalent bonds between silica filler and rubber molecules by in-chain modification of styrene-butadiene molecules. After compounding, the curing characteristics, the mechanical and dynamic mechanical properties of the composites were analyzed. The GMA-SBR/silica composite exhibited higher wear resistance of 32.9% and lower rolling resistance of 25.7% than the styrene-butadiene rubber 1721/silica composite. These results are due to the improvement of silica dispersion in the composite as the covalent bonding increased the filler–rubber interaction and the countervailing effects of less filler flocculation. The proposed approach assists in finding a solution to improve the performances of tires for fuel efficiency and the reduction of greenhouse gases from the vehicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call