Abstract

S-type locally-active memristor (LAM) has a great potential for brain- inspired neuromorphic computing, where the S-type LAM-based oscillator is a fundamental building block. Concerning the S-type LAM, this paper constructs a material-independent model in simple mathematical expression, which can be relatively easily analyzed. By biasing the memristor into the locally- active region, and connecting it with a capacitor, a second-order oscillator can be built. The small-signal equivalent circuit of the memristor and its frequency response are applied to determine the period oscillation frequency range and compensation capacitance. Hopf bifurcation theory is used to analyze oscillation mechanism of the second-order circuit and appropriate capacitance. By adding an extra inductor into the second-order oscillator, a novel third-order chaotic circuit is developed, where a saddle-focus is derived to create chaos. Its dynamic characteristics are investigated via Lyapunov exponents, bifurcation diagrams, dynamic route map, and so on. The local activities of the single memristor, second-order oscillator, and third-order chaotic circuit are verified through the mathematical analysis. Finally, physical circuit realizations of the S- type LAM-based oscillators, including the memristor emulator, are presented. Both simulation and experimental results demonstrate the practicability of the proposed mathematical model and the validity of the theoretical analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.