Abstract

Deep networks require a considerable amount of training data otherwise these networks generalize poorly. Data Augmentation techniques help the network generalize better by providing more variety in the training data. Standard data augmentation techniques such as flipping, and scaling, produce new data that is a modified version of the original data. Generative Adversarial networks (GANs) have been designed to generate new data that can be exploited. In this paper, we propose a new GAN model, named StynMedGAN for synthetically generating medical images to improve the performance of classification models. StynMedGAN builds upon the state-of-the-art styleGANv2 that has produced remarkable results generating all kinds of natural images. We introduce a regularization term that is a normalized loss factor in the existing discriminator loss of styleGANv2. It is used to force the generator to produce normalized images and penalize it if it fails. Medical imaging modalities, such as X-Rays, CT-Scans, and MRIs are different in nature, we show that the proposed GAN extends the capacity of styleGANv2 to handle medical images in a better way. This new GAN model (StynMedGAN) is applied to three types of medical imaging: X-Rays, CT scans, and MRI to produce more data for the classification tasks. To validate the effectiveness of the proposed model for the classification, 3 classifiers (CNN, DenseNet121, and VGG-16) are used. Results show that the classifiers trained with StynMedGAN-augmented data outperform other methods that only used the original data. The proposed model achieved 100%, 99.6%, and 100% for chest X-Ray, Chest CT-Scans, and Brain MRI respectively. The results are promising and favor a potentially important resource that can be used by practitioners and radiologists to diagnose different diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call