Abstract
Style translation is the process of transforming an input motion into a new style while preserving its original content. This problem is motivated by the needs of interactive applications, which require rapid processing of captured performances. Our solution learns to translate by analyzing differences between performances of the same content in input and output styles. It relies on a novel correspondence algorithm to align motions, and a linear time-invariant model to represent stylistic differences. Once the model is estimated with system identification, our system is capable of translating streaming input with simple linear operations at each frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.