Abstract

The northern part of the Northeast German Basin contains a large number of Late Permian (Zechstein) salt pillows, whereas diapiric structures are almost completely absent. This lack of diapirs facilitated the study of early stages of salt movement in the basin. Salt pillows and related structures were investigated in terms of distribution, geometry and time of initiation of salt flow within the regional geological context. The primary Zechstein thickness in the study area was reconstructed to gain more insight into the relationship between the geometry of the salt layer and the style of the salt-related structures. In this study, no clear spatial relationship between the salt structures and basement faults has been found and the location of the salt structures in this area appears to be highly independent of the underlying structural grain. The overburden is affected by minor faulting. We propose that buckling of the overburden due to regional compression significantly contributed to the initiation of the Late Jurassic to Early Cretaceous salt structures in the basin. Reverse faulting of the Gardelegen and Haldensleben Faults is related to inversion tectonics and exerted a compression on the basin fill. During the deformation, the Late Permian salt layer acted as an efficient detachment and led to a marked decoupling of the Mesozoic overburden from the underlying pre-Zechstein rocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.