Abstract

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract with extremely poor prognosis. The malignant transformation of GBC is associated with cell proliferation, invasion, and epithelial-mesenchymal transition (EMT). However, the molecular mechanisms underlying GBC progression are poorly understood. We found that serine threonine tyrosine kinase 1 (STYK1) was elevated in GBC and was negatively correlated with clinical outcomes and prognosis. Overexpression of STYK1 in GBC cell lines gave rise to increased cell proliferation, colony formation, migration and invasion, thus committing cells to undergoing EMT. In contrast, silence of STYK1 led to opposite effects on cell transformation. Consistent with STYK1 gene knockdown, AKT specific inhibitor MK2206 abrogated tumor promoting action induced by STYK1, suggesting that PI3K/AKT pathway is essential for the oncogenic role of STYK1 in GBC. STYK1 shRNA in GBC cells inhibited development of xenografted tumors compared with control cells. Collectively, our findings suggest that STYK1 is a critical regulator of tumor growth and metastasis, and may serve as a potential target for GBC therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call