Abstract
Chapter 15 deals with the Hilbert space theory of Sturm–Louville operators \(-\frac{d^{2}}{dx^{2}}+ q(x)\) on intervals. First, we study the case of regular end points. Then we develop the fundamental results of H. Weyl’s classical limit point–limit circle theory. Some general limit point and limit circle criteria are proved. Next, we define boundary triplets in the various cases (regular end points, limit point case, limit circle case), determine their gamma fields and Weyl functions, and describe all self-adjoint extensions. In the final section, we derive formulas for the resolvents of some self-adjoint extensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.