Abstract
This paper is concerned with the application of the Kramer sampling theorem to Sturm–Liouville problems with coupled boundary conditions. The analysis is restricted to the case when the spectrum of the boundary value problem is simple. In all such cases, it is shown that Kramer analytic kernels can be defined and that each kernel has an associated analytic interpolation function to give the Lagrange interpolation series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational Analysis and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.