Abstract

AbstractThe two‐state two‐path model is introduced as a minimized model to describe the quantum dynamics of an electronic wave packet in the vicinity of a conical intersection. It involves two electronic potential energy surfaces each of which hosts a pair of quasi‐classical trajectories over which the wave packet is assumed to be delocalized. When both trajectories evolve dynamically either diabatically or adiabatically, the full wave packet dynamics shows only features of the dynamics around avoided level crossings in the vicinity of the conical intersection. When one trajectory evolves adiabatically whereas the other trajectory follows a diabatic evolution, quantum mechanical interference of the wave packet components on each path generates Stueckelberg oscillations in the transition probability. These are surprisingly robust against a dissipative environment and, thus, should be a marker for conical intersections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.