Abstract

Eye tracking is a useful tool for studying human cognition, both in the laboratory and in real-world applications. However, there are cases in which eye tracking is not possible, such as in high-security environments where recording devices cannot be introduced. After facing this challenge in our own work, we sought to test the effectiveness of using artificial foveation as an alternative to eye tracking for studying visual search performance. Two groups of participants completed the same list comparison task, which was a computer-based task designed to mimic an inventory verification process that is commonly performed by international nuclear safeguards inspectors. We manipulated the way in which the items on the inventory list were ordered and color coded. For the eye tracking group, an eye tracker was used to assess the order in which participants viewed the items and the number of fixations per trial in each list condition. For the artificial foveation group, the items were covered with a blurry mask except when participants moused over them. We tracked the order in which participants viewed the items by moving their mouse and the number of items viewed per trial in each list condition. We observed the same overall pattern of performance for the various list display conditions, regardless of the method. However, participants were much slower to complete the task when using artificial foveation and had more variability in their accuracy. Our results indicate that the artificial foveation method can reveal the same pattern of differences across conditions as eye tracking, but it can also impact participants’ task performance.

Highlights

  • Eye tracking is a widely used tool for studying patterns of human attention (Holmqvist et al, 2011)

  • We describe our method for implementing this technique and compare the results to eye tracking data obtained from a visual search task

  • Our study aimed to address this gap by performing a direct comparison between eye tracking and artificial foveation for a visual search task

Read more

Summary

Introduction

Eye tracking is a widely used tool for studying patterns of human attention (Holmqvist et al, 2011). We move our eyes to obtain high-resolution information from different parts of our visual environment (Henderson, 2003). These movements are called saccades, and the pauses between saccades, when the eyes are relatively stationary, are called fixations. Humans can attend to things that they are not fixating with foveal vision, such as attending to something in peripheral vision or attending to auditory rather than visual inputs (Holmqvist et al, 2011; Underwood & Everatt, 1992), patterns of fixations are generally a reasonable indicator of what people are attending (Corbetta, 1998; Hayhoe, 2004; Just & Carpenter, 1980; Liversedge & Findlay, 2000; Rayner, 1998). Outside of laboratory experiments where participants are explicitly directed to attend to stimuli without fixating on them, there are few tasks where people would fixate on something other than the item that they are attending to (cf. König et al, 2016; Land, 2009; Land et al, 1999)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.